Explicit simulations of aerosol physics in a cloud-resolving model: a sensitivity study based on an observed convective cloud
نویسندگان
چکیده
The role of convection in introducing aerosols and promoting the formation of new particles to the upper troposphere has been examined using a cloud-resolving model coupled with an interactive explicit aerosol module. A baseline simulation suggests good agreement in the upper troposphere between modeled and observed results including concentrations of aerosols in different size ranges, mole fractions of key chemical species, and concentrations of ice particles. In addition, a set of 34 sensitivity simulations has been carried out to investigate the sensitivity of modeled results to the treatment of various aerosol physical and chemical processes in the model. The size distribution of aerosols is proved to be an important factor in determining the aerosols’ fate within the convective cloud. Nucleation mode aerosols (here defined by 0≤d≤5.84 nm) are quickly transferred to the larger modes as they grow through coagulation of aerosols and condensation of H2SO4. Accumulation mode aerosols (here defined by d≥31.0 nm) are almost completely removed by nucleation (activation of cloud droplets) and impact scavenging. However, a substantial part (up to 10% of the boundary layer concentration) of the Aitken mode aerosol population (here defined by 5.84 nm≤d≤31.0 nm) reaches the top of the cloud and the free troposphere. These particles may continually survive in the upper troposphere, or over time form ice crystals, both that could impact on the atmospheric radiative budget. The sensitivity simulations performed indicate that critical processes in the model causing a substantial change in the upper tropospheric number concentration of Aitken mode aerosols are coagulation of aerosols, condensation of H2SO4, nucleation scavenging, nucleation of aerosols and the transfer of aerosol mass and number between different aerosol bins. In particular, for aerosols in the Aitken mode to grow to CCN size, coagulation of aerosols appears to be more important than condensation of H2SO4. Less imCorrespondence to: A. Ekman ([email protected]) portant processes are dry deposition, impact scavenging and the initial vertical distribution and concentration of aerosols. It is interesting to note that in order to sustain a vigorous storm cloud, the supply of CCN must be continuous over a considerably long time period of the simulation. Hence, the treatment of the growth of particles is in general much more important than the initial aerosol concentration itself.
منابع مشابه
The Explicit-Cloud Pparameterized-Pollutant hybrid approach for aerosol--cloud interactions in multiscale modeling framework models: tracer transport results
All estimates of aerosol indirect effects on the global energy balance have either completely neglected the influence of aerosol on convective clouds or treated the influence in a highly parameterized manner. Embedding cloud-resolving models (CRMs) within each grid cell of a global model provides a multiscale modeling framework for treating both the influence of aerosols on convective as well a...
متن کاملRole of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations
[1] A two-dimensional cloud-resolving model with detailed spectral bin microphysics is used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: south Florida, Oklahoma, and the central Pacific. A pair of model simulations, one with an idealized low cloud condensation nuclei (CCN) (clean) and one with an idealized h...
متن کاملAerosol effects on convective clouds
Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close Full Screen / Esc Abstract Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close Full Screen / Esc Abstract Aerosols affect the climate system by changing cloud characteristics in many ways. They act as cloud condensation and ice nuclei and may have an influence on the hydrological cycle. Here we investigate a...
متن کاملMicrophysical Processes Evident in Aerosol Forcing of Tropical Deep Convective Clouds
This study investigates the effects of aerosols on tropical deep convective clouds (DCCs). A series of largescale, two-dimensional cloud-resolving model simulations was completed, differing only in the concentration of aerosols available to act as cloud condensation nuclei (CCN). Polluted simulations contained more DCCs, wider storms, higher cloud tops, and more convective precipitation domainw...
متن کاملMulti - scale interactions in an idealized 1 Walker cell : Simulations with sparse 2 space - time superparameterization
5 This paper discusses the Sparse Space and Time SuperParameterization (SSTSP) algorithm 6 and evaluates its ability to represent interactions between moist convection and the large7 scale circulation in the context of a Walker cell flow over a planetary scale two-dimensional 8 domain. The SSTSP represents convective motions in each column of the large-scale model 9 by embedding a cloud-resolvi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004